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We study families of volume preserving diffeomorphisms inR3 that have a pair of hyperbolic fixed
points with intersecting codimension one stable and unstable manifolds. Our goal is to elucidate the
topology of the intersections and how it changes with the parameters of the system. We show that
the ‘‘primary intersection’’ of the stable and unstable manifolds is generically a neat submanifold of
a ‘‘fundamental domain.’’ We compute the intersections perturbatively using a codimension one
Melnikov function. Numerical experiments show various bifurcations in the homotopy class of the
primary intersections. ©2000 American Institute of Physics.@S1054-1500~00!01201-5#
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The theory of transport for area-preserving maps is
based on the construction of ‘‘partial barriers,’’ typically
from segments of stable and unstable manifolds of fixed
points, periodic or quasiperiodic orbits. Our ultimate
goal is the generalization of this theory to higher dimen-
sions. Perhaps the simplest place to start is with volume
preserving maps in three dimensions. A hyperbolic fixed
point of such a map has either a two-dimensional stable
or unstable manifold. Since they are codimension one
these manifolds can separate phase space into region
containing nontrivial invariant sets. The major problem
is to choose appropriate domains of these manifolds tha
can be used in the construction of partial barriers. To
this end we define fundamental domains and their pri-
mary intersections by using a partial ordering along the
manifolds. Primary intersections are typically curves on
the two-dimensional manifolds. These curves, when re
stricted to a fundamental domain, become loops and can
be classified by their homotopy. As parameters of a map
change, these homotopy classes can change as well.
investigate this, we start with an integrable mapstar304.8
manifolds. Our numerical computations show the cre-
ation and destruction of intersection loops of various
types.

I. INTRODUCTION

Volume-preserving maps provide an interesting and n
trivial class of dynamical systems that give perhaps the s
plest, natural generalization of the class of area-preser
maps to higher dimensions. Moreover, volume-preserv
maps naturally arise in applications as the time one Poin´
map of incompressible flows—even when the vector field
the flow is nonautonomous. Thus the study of the dynam
.8(has)well.)-4404.8as
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tively. The saddle-node and period doubling lines divide
~t,s! plane into quadrants which alternate between typeA and
B. The dynamics on the two-dimensional manifolds will d
pend upon whether the pair of multipliers are complex or
real.

If a map has a pair of fixed points, one of typeA and one
of type B and the pair of two-dimensional manifolds~stable
and unstable! intersect, then generically they intersect alo
one-dimensional manifolds. We have observed earl3

changes in the topology of the intersection manifolds as
parameters vary. Elucidating this topology is the primary a
of this paper.

III. PRIMARY INTERSECTIONS

In this section we introduce the concepts of the fun
mental domain of a stable~or unstable! manifold and of pri-
mary heteroclinic intersections between such manifo
These generalize the well known concepts for two dim
sional maps. We, as usual, assume thatf :R3!R3 preserves
the 3-formV, ~1!.

A. Proper loops and fundamental domains

Definition 1 (Proper Loop): Suppose a5 f (a) is hyper-
bolic and of type A, i.e., has a two-dimensional stable ma
fold Ws(a). A proper loopg,Ws(a) is a curve that bounds
a local submanifold that is an isolating neighborhood of
In other wordsg is proper if there is an open local subman
fold Wloc

s (a) such that
~a! ]Wloc

s (a)5g and

~b! f (Wloc
s (a)), int(Wloc

s (a)).
Similarly if b is a type B fixed point, then a loo

s,Wu(b) is proper if it is proper for f21.
If g is proper, we can define the stable manifoldstarting

at g, denoted by byWg
s(a), as the closure inWs(a) of the

local submanifold bounded byg in Defn. 1. Similarly, ifb is
e
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a type B fixed point with a proper loops, we define the
manifoldup tos, denotedWs

u(b), as the interior of the loca
manifold that corresponds tof 21 in Defn. 1.

Notice that the definition is not symmetric, becau
Wg

s(a) is a closed subset ofWs(a), while Ws
u(b) is open in

Wu(b) ~cf. Fig. 2!. The asymmetry is just a technicality i
order to simplify some proofs.

Definition 2 (Fundamental domain): Let a and b be hy-
perbolic fixed points of type A and B, respectively. An an
lus S is a fundamental domain of Ws(a) if there exists some
proper loopg in Ws(a), such that

S5Wg
s~a!\Wf +g

s ~a!.

Similarly, a fundamental domain in Wu(b) is a manifold
with boundary of the form

U5Ws
u~b!\Wf 21+s

u
~b!,

wheres is a proper loop in Wu(b). In addition, we define
Fu(b) as the set of all fundamental domains in Wu(b), and
Fs(a) as the set of all fundamental domains in Ws(a).

In each case, the fundamental domain is an annulus w
one open and one closed edge. An immediate consequ
of the definition is that all the forward and backward iter
tions of a fundamental domain are also fundamental. I
easy to see that proper loops always exist, and in fact,
stable~and unstable! manifolds can be decomposed as t
disjoint union of fundamental domains:

Ws~a!5 ø
kPZ

f k~Sg~a!!.

The importance of fundamental domains is that much
the information about the entire manifold can be found
looking only at these annuli. For instance, theprimary het-
eroclinic intersectionbetweenWs(a) andWu(b), which we
define next, is defined using fundamental domains.

B. Primary intersection

Given a fundamental domainS, the pointsjPWs(a) are
given a partial order defined by the integerk
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Lemma 1: Suppose Ws(a)ùWu(b)Þ0. Then for all S
PFs(a) and UPFu(b), there exists a unique integerk,
called the intersection index such that

k~U,S![sup$kPZ:Uù f k~S!ÞB%

5sup$kPZ: f 2k~U!ùSÞB%.

Proof: This follows from the facts that each manifold
composed of the union of the fundamental domains, that
closures ofU andS are compact and do not contain the fix
points, and thatf k(S)!a and f 2k(U)!b ask!‘. The two
definitions are equivalent, since f 2k(Uù f k(S))
5 f 2k(U)ùS. j

The intersection index is useful because it is invaria
k( f (U), f (S))5k(U,S). More generally, the intersection in
dex of iterates of fundamental domains changes as

k~ f m~U!, f n~S!!5k~U,S!1m2n.

Roughly speaking, a primary intersection is the set
points where the stable and unstable manifolds ‘‘first’’ me
For maps of the plane, one says thatxPWs(a)ùWu(b) is a
primary intersection point if the intersection of the stab
manifold starting atx and the unstable manifold up tox is
empty:Wx

s(a)ùWx
u(b)5B. This means that one can choo

fundamental domainsS and U so that that their boundarie
are ~primary! heteroclinic points. As noted by Easton, th
leads to a classification of heteroclinic orbits by th
‘‘type,’’ 27 and subsequently a classification of the struct
of the ‘‘trellis,’’ the closure of the stable and unstable ma
folds.

To directly generalize the planar definition, we wou
need to find a proper loopg5s that is also heteroclinic, and
such thatWg

s(a)ùWg
u(b)5B. These proper loops would b

the analog of primary intersections. However, such loo
need not exist as we saw in Ref. 3. One consequence is
if one fixes a pair of fundamental domainsU andS, then the
set of points at whichf k(U) first intersectsS is not neces-
sarily a union of submanifolds ofS—in particular the inter-
section curves may end in the middle ofS if U is not chosen
to be properly ‘‘aligned’’ withS.

To alleviate this problem, we use the intersection ind
to define the primary intersection of the stable and unsta
manifolds of a and b, so that the connected intersectio
curves are submanifolds:

Definition 3 (Primary Intersection): Let a and b be hy-
e
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method, but that this intersection is generically transve
and along one dimensional curves. Generally the pertur
map takes the form

Fe5F01eP1 ,

such thatFe is volume-preserving. We make the simplifyin
assumption thatP1(a)5P1(b)50, so thatFe still has hy-
perbolic fixed points ata andb. However, stated in terms o
P1 , it is not so easy to construct volume-preserving pert
bations toF0 . It is easier to let

Fe5~ id1eP!+F0 ,

where I is the identity map. This can always be done sin
P[P1+F0

21. In these terms it is easier to construct perturb
tions that do not destroy the volume-preserving property

Lemma 3: Let :13!Fe
e
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such a way that it has two invariant sets which give rise t
saddle connection between two fixed points. Examples s
lar to these were found by Lomelı´22 and are related to the
work of Suris30,31on integrable maps. It is interesting to no
the map need not have an integral, and therefore, apart
the two invariant sets, typically exhibits chaotic behavi
We finally give an example for which the resulting volum
preserving map has a first integral.

A. Explicit heteroclinic connection

We start with the area-preserving map generated by
Lagrangian generating functionL:R2
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
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The fixed line of this reversor is thex axis, andS0(a)5b. A
standard argument32 implies that points whereWs(a) crosses
the x-axis are heteroclinic tob.

Lemma 7 implies that the invariantI can be used to
simplify the computation of the Melnikov function. Reca
wnloaded 10 Nov 2005 to 128.138.249.124. Redistribution subject to AIP 
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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rotation about thez axis by 2pv is conjugate to one by
2p(12v) under the coordinate transformationu!2u.
There are four distinct regions in Fig. 6, corresponding
loops with homotopy classes~0, 1!, ~1, 0!, ~3, 1!, and~1, 0!
with a pair of trivial loops. The parameters for Fig. 5 are ne
the codimension two, cusp point at (v,m)’(0.2,0.15),
which corresponds both to the collision of the trivial loo
with a ~1, 0! loop, and their shrinking to a point. Examples
the zero contours of the Melnikov function are shown in F
7, corresponding to the parameter values labeled~a!–~f! in
Fig. 6. Whenm is small, the intersection curves are ‘‘equ
torial,’’ of class ~0, 1!; this corresponds to Fig. 7~d!. For
small v and moderate values ofn the primary intersections
correspond to a pair of~1, 0! curves plus a pair of
‘‘bubbles,’’ curves with homology class~0, 0!, as shown of
Fig. 7~a!. As v increases these bubbles disappear, leav
only the ~1, 0! curves, shown in Figs. 7~b!, 7~e!, and 7~f!.
These become increasingly elongated as one approache
~3, 1! bifurcation where they reconnect, as shown in F
7~c!, forming a single pair of~3, 1! loops.

To compare the actual behavior of the manifolds for
mapFe , we need to choose a reasonably large value ofe so
that the intersections can be numerically resolved. It is re
tively easy to plot the manifoldWs(a) when the pair of
stable multipliers at the fixed point have the sam
magnitude;25 this is true for our map by~14!. In this case one
o
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APPENDIX: PROOF OF THEOREM 6

For each point j in the saddle connection
Ws(a)ùWu(b), there is a neighborhoodN0 contained in a
fundamental domain of the saddle connection, such tha
the iteratesF0

k(N0
ll
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