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Abstract

Symplectic twist maps are obtained from a Lagrangian variaiional principie. It is well known that nondegeneraie minima
of the action correspond to hyperbolic orbits of the map when the twist is negative definite and the map is two-dimensional.
We show that for more than two dimensions, periodic orbits with minimal action in symplectic twist maps with negative
definite twist are not necessanly hyperbohc In the proof we show that in the nelghborhood of a rmmmal penodlc orbit of

IS Not a twist map. (¢ 1998 Elsevier Science B.V.

PACS: 03.20.4i; 05.45.+b

1. Introduction T
L

We consider a discrete Lagrangian system on the

configuration space Q, of dimension 4. A discrete La-

grangian, L(x,x'), x, x’ € Q, is a generating function ! 4 ; )
for a symplectic map (x'.v') = F(x.y) on Q x R4, can fix the period of the torus to 1 in every dimension

that is implicitly defined by (for a review, see Ref. and choose m € Z°, otl}c?rwise we just set m = 0. It is
[10]) easy to see that every critical point of W,,,, corresponds

to a periodic orbit of F with period n.
A minimal periodic orbit is a nondegenerate, local

When the configuration space is the torus, Q = T, we

y= _Ll(x’ xl) s

/ !
¥y =Ly(x,x"). (D
minimum of W,, (we do not require it to be glob-
1
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assume that the (local) twist condition,_det L12'9‘= 0,
holds, so that x’ can be determined, at least locally,
as a function of (x y) The dynaxmcs can also be ob-

acuon vy

expected to be important: for example every orbit on
an invariant torus (that is a Lagrangian graph) is min-
imizing [9] The purpose of this note is to establlsh
1S minimal and 1ts stapily type.

Relations between the index of a certain quadratic

carn (1nthieh- jaum et [ P —

form (which isnct o Hesstamebthe-setter ) ond-the
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have been obtained in Ref. [1]. Similar results spe- o )
T W e o g o Ry v W a2 T S o
approach is different because we specifically ook at 1L 1S
action rnlmmlzmg orbits, i. . the index of the Hessian

Af thn Anbinw (A N fne cnnwionn IV T DAl D 4 ceenn

BT .6xi_1 + Pidxi + B:xiu1 = 0. (7Y

eriodi orbi s nothyperbeli Tis s very iy, SR SUbJct 0 e condton it 3 = .

a completely different method. Although it is known s £ c:,‘ . : - |
one flow [111, this requirc§ one to treat time .depen- period

dent Lagrangian flows, which was not done in Ref.

(21 M (p) = Py + B, +1BI, (8)

Linear stability of a periodic orbit is determined by
its multipliers. Let {x;, x2, ...x,} be a periodic orbit

with period n, and let x;1; = x;. The linearization My(p) = ( T Py B, +B; /'“) , (9)
of the map at this orbit gives rise to an eigenvalue Bi +uB; P,
Erob‘lem YV.lth‘ 3lg¢3nzalue‘s that vjve cill M, multlgher's / P, B. 1 ﬂ -
a multiplier by B? P, B;
1 1 M,,([L) = .. s
=—|2—-u——). 3) ’
4( H /"‘) BI—z P"I“_l Bn—l
Since the multipliers for a symplectic map come in 1B, B,, P
reciprocal pairs x and 1/u, there are d residues in n>2. (10)

dimension d, and their values completely determine
the stability type of the orbit. A multiplier is elliptic,
denoted “E” when u = €' or equivalently when 0 <
R < 1. It is inverse hyperbolic, denoted “I”, when
1 < R and hyperbolic, denoted “H”, when R < O.

P e e ettt M(1) >0, (11) ‘

RIS TATCCT CAve CAn OCCUT ORIy WHen 4 2 2. then the matrix M,,(e'z) is Hermitian.

With the notation When d = 1, there is a simple relation between

The Hessian of the periodic action W,,, is given by
M, (1). the assumption that the periodic orbits under
consideration be minimal therefore is

ekt (A B\ . the Hessian of the periodic action Wy, and the
(4]

_B-'A. _p-! where M, (1) = D*W,, is tl?e Hessian 'and B, =

DF(x;,yi) = (BT 6 B'IIA D-l‘f'l ) . (5) Lia(xi, xi+1). For d > 1, there is no such simple rela-

g T RS A T tion, though the product of the residues can be written

It is often more convenient to obtain the stability of
period n orbits directly from the Lagrangian formula-

similarly [7]. Eq. (12) implies that when d = 1 and
the twist is negative definite, nondegenerate minimal

—orbits pre hynephalic Ngaidlleahw that thisds folve,

—tion d I5ing thasahbreiation
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for d > 1: the multipliers of minimal periodic orbits This is positive definite since it is the sum of a posi-
can become elliptic. tive definite matrix and a positive semidefinite matrix.

In Section 2 we analyze minimal fixed points and Therefore, det M, (exp(i¢p)) # O, and there are no
establish the fact that they can be nonhyperbolic if multipliers on the unit circle. Thus for negatlve def-

b it et nancwrmarsc cwdudefigita FauaD inifa fivig* 4 opdagansreln mgfuﬂ_

iterated map F". However, it is well known [ 10] that lem for R problem cannot be derived in this sim-
the iterate of a twist map is in general not a twist map. ple way. Introducing the symmetric part of the twist
This does not preclude the possibility that the iterated S = (B1 + BT) / 2 and 1ts antlsymmetrlc pan Y =

g case. m_Secnog 3, Flgallv we mve_t_n e les det(M:(1) —4RS — 45V = (. ) 0)

where 6 = (1/u — p) /4 = /R(1 — R). By simulta-
neous diagonalization we can again simplify the prob-
. . lem in reducing M, (1) to the identity and S to the
2. Fixed ts A
fxed potr diagonal S. Y denotes the transformed Y which is still

ey
F,‘ - "'f.-
S—
P| + B) + B} > U. Rewniting M; (4) to isolate this e ey R
term gives

We know that this must be a polynomial in R, be-
cause the reflexivity of the characteristic polynomial

M;(u) =M(1) + 1 (,u, + 1_ 2) (B, + Bf) for the multiplier u [3] allows it to be rewritten as a
“ polynomial of degree d in u + 1/u, or, equivalently,
1 in R. To see this explicitly we employ the “cumulant
- — (B - 13 ;
t3 2 (,u )( 1 - B). (13) expansion” for an arbitrary n X n matrix A,

For the physically interesting case when the twist B, LI
is symmetric, the last term vamshes and the spectrum det(1+¢6A) = z g0i(A), (18)

where the cumulants (or up to a sign the coefficients
of the characteristic polynomial of A) are recursively
defined by

det(M; (1) —4RB;) =0. (14)

Since M, (1) is positive definite, and both matrices
are symmetric, they can be simultaneously dlagonal-

out complex quadruplets of multiphiers. Eliiptic muiti-
pliers are possible for arbitrary symmetric B, and oc- = - Z (=D)*1 Qi (M) rA* . (19)
curwhen0<R<1 o -

P C Y
E < T Tt TO

T T rr-J

_ and eventually set € = —1. For large dimensions it is
M; () = M, (1) + 2(1 —cosg)(-By). (15) quite cumbersome to obtain explicit expressions for
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the “characteristic polynomial” of R because in the
expansion of trA* we must compute terms of the form

tr(RS + 8Y)* = E P8 u(a(S, i, Y. D),  (20)
jHi=k

2

) €!) Oogqucts wiin j ractors » and ¢ ractors Y e Mty ;ZEI—j

in all possible orderings. Since we can cyclically per- 06 E

- mute under the ftcrms-can ined:
Since in general the symmetric and the antisymmetric
part of the twist do not commute, these expressions
contain traces of products of S and Y for k > 2. For
d =2,3, we obtain

0 =det(1 — 4RS) — 8R(1 - R) tr(Y?), 2n

0 =det(1 — 4RS) — 8R(1 — R)
x (tr(Y2)(1—4RtrS) +8Rtr(SY?)) =0. (22)

_ J. “g 1 tl,g ;:_]l tha tarmne xyrith o ~AdAd say b

06

o_
num3eror Y TN e Sequence or S and Y. IT reading the & 00 o4 OM*’“
RS L

sequence backwards is the same sequence, then this

torm ig=anssymmetis and itsirasy vanishes, Mersad- Fig, 1. Stabilit

of_minimizing orbit for_a 4D man in the space

sum is antisymmetric, hence vanishes under the trace.

E n 1602 3.8 AN, /S a1 wman

R of degree d. +detM — 4R(1 — R) tr(¥?) (23)
If w =1 then § = 0 and R = 0 such that the gen- )

eral determinant (17) can never vanish. This means =(4d\R—1)(4dR— 1) + 16a°R(R - 1) .

that a minimizing orbit cannot undergo a saddle node (24)

bifurcation (without losing the minimizing property).

e L e e 3 lim—

symmetric part of the twist. In Ref. [5] a similar con- 0. As in the general case R = 0 is impossible and
itien far a : gl 'fu-nn’i i -

minimizing

I

- . B
b e da W ST
e s & yi i
0 o v

sential parameters S = diag(d;, d>) and a, the single corresponds to multipliers of type HH. The transition
entry of the antisymmetric Y. The polynomial deter- from HH to any region in the adjacent quadrants is
mining p is given by (17) respectively (21), or more not a regular bifurcation, because it induces R to pass
explicitly, through infinity. In a smooth system this is impossible.
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Basically it means that the signature of the symmetric
twist is preserved under smooth parameter variation,
which is by definition true in the general case. If the
signature of the twist is mixed, we have HE or HI,
and if it is positive, then we have II, IE or EE, the
transitions taking place at d; = 1/4. Now making a

; B

volve driving R through infinity, i.e. making the twist
singular.

The main change occurs above the HH and II
region. Increasing a leads to a complex bifurcation
where four real multipliers collide and turn complex,
entering the region CQ. Increasing a further leads
to the inverse complex bifurcation in which four
complex multipliers collide on the unit circle, hence
creating four elliptic multipliers. Since these elliptic
multipliers are created in a complex bifurcation their
Krein signatures must be different. Note that even
though it looks like the two EH regions are discon-
nected, this is due to the ambiguity in the ordering of
the eigenvalues in S. In the full parameter space they
aré connected and together with /H form a region
bounded by detM; (1) = 0. All the other regions are
smoothly connected; only for symmetric twist the

HH region is separated from the others. s '

part can turn the minimizing hyperbohc ﬁxed point
elliptic via an (inverse) Krein collision.

3. Periodic orbits

We Tiow turn 10 tie caicuiation of stabllrtrcf pe-

1. . I

such that
(M|D)=A-BD"'C. (26)

A and D are square matrices; if they have different di-
mensions then B and C are not square matrices. The

A Lalal_ .

POFSD. POIEPRIE

detM = det(M | D) detD. (27)

We will need the fact [ 12] that the Schur complement
of a symmetric positive definite matrix is symmetric
and positive definite. This is easily seen because trans-
forming the quadratic form corresponding to M with

1 0
T= ( -D7'B’ 1)
gives T'MT = diag((M | D),D) . (28)

For a periodic orbit of period n = 2 we could multiply
DF(x3,y;) and DF (x1, y1), and identify the resulting
matrix to be of the form (5). It is simpler to consider
the second difference equation for the period of 2 orbit,

—B0x; + Pyox; + B16x;=0. (30)

Solving the first equation for 6x2 and eliminating it
in the second directly gives M . The superscript 2
denotes that the matrix is that of a fixed point corre-
sponding to a period 2 orbit. By comparison with (8},
we find

- ’ "'_I' e - _

L R L A il e SAILINE LAIWEZ 2XXsesAw sRaw

connection with Schur’s complement [12] of M, in

-1 —aT L &7 N

—— T gk
twist generating function of a minimal fixed point. For
n > 2 we will directly work with Schur’s complement
to establish this result. Recall that the Schur comple-
ment (M | D) of M with respect to D is defined by
the following factorization,

(AR [(MID

P® =p - BIP;'B, - B\P;'B. (
1 i 2 Lo} 32)

B!? and P = A® 1 D® define a generating func-
tion by (4) for the iterated map. The splitting of P{*
into A§2) and D§2) is arbitrary for our purposes; only
P(Z) enters the stability formulae.

Our Lask is to show that the fact that the periodic

nf 1)_,&1‘1&109“%“%—
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is implied by Mz(1) > 0, because P; is a principal
subblock ? of M.
To show that M{z) (1) > 0, we note that

MP® (1) =P + B® + (BY)T (33)
=P, — (B, + B])P; (BT +By) (34)
=(My(1) | Py). (35)

Now the desired statement immediately follows be-

cause the Schur comnlement of a symmetric nositive
comp:iement Of a symmelric po

is also positive definite. By induction all Mf,‘f,‘) (1) >
0. By assumption B{" and B{", in M{" are nonsin-
gular, and since P“) is a pnncmal subblock of the
positive definite matrix M{! it is positive definite, and
therefore also nonsmgular. In the iteration step from i
toi+1, k= n—i+1,one of the relevant twist matrices
is not changed, B("”) B,(f)z, the other one obtained
from {39) is also nonsingular because by assumption
(1) the two matrices on the right-hand side of (39)

are nonsineular and (2) the matrix P in the came
are nonsingular, and (2) the matnix P 1n the same

deﬁniii matrix is agai i iti i equation is nonsingular because it is a principal sub-

case of period n we directly use Schur’s complement

'Y

by d in each step. The final result after n — 1 steps is
(") () where the superscript is an iteration index.
From this we can identify the twist B"" of the gen-

have shown that the twist stays nonsmgular and that
. (i+1)
t
—
Although in general the composition of twist maps
does not give a twist map we have shown that in the

neighborhood of a minimal period n orbit there ex-

NCIZNDOImood oO1 UIc Imiimdl perioa n Oron vid (o).

e nroof_nroceeds by induction. The initial matrix tion concerning stability of mlmmal periodic orbits is

DYE MY ALTANSATAL MRS Sy STERNSY/ T TR N R . LT - S . . .
iteration rule is mtf: t\.v1st‘ is not stable under this iteration. The final
(H_” - E )
(w) = (M} () | )., (36) -
—it D)~
or more explicitly, B{” = B, 1_1(1’}'l Hy=1(-B;). (42)
=2

By, =B (k) By, %)
B(‘“)-B('), j=L.. k=2, (40)
PO =pPO  j=2,. k-2, (41)

for n > 2 we obtain the product of n — 1 symmet-
ric positive definite matrices which is in general nei-
ther symmetric nor positive definite. However, if the

matrices P("""“) commute with each other then their

nradiiat ig n‘smmnf"n and nncitiva dafinita Thic can
thu\al 1D yuuuuux\, Q12 PUBIHV\« AV V32958 L N LIIAD wvail

] i ; ies do nnt

these formulas collapse to (31). Parts of this iteration

£ ila ara idantioal to thnaga ranartad in Rafe [0
lUllllula ALV IUViIUVAGL WV UIVov IUPUI WA KX AWVAD. |/ ]

i [ a—
1n reducing the dimension Dy 4. NOte that I0r kK = £

therefore commute. But this is true only if the poten-
tial separates, such that we are back to the case d = 1.

i Note that if we apply the determinant formula for
——— i e ot e b s g s ——

to fixed points of twist maps. This fact has not been

realized before, and we are now going to prove it.
Since we start a positive definite matrix M{" (1) >

0, the next iterate constructed by Schur’s complement

2 By principal subblock we mean a block that is centered on the
diagonal.

we obtain
det M{TD (1) = det(MPP (w)|PY7) detP? . (43)

In each step the last factor is nonzero, such that we

ignara all «f tham A And
Cai ignore au O1 uilin ax nna

0=detM{P () < 0=detM™ (u), (44)
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riodic orbits that are not hyperbolic. The first exam-

nln is a little artificial since it involves a nonconstant

15 Q IS QIlLNRAL SAHUT 1L 2LVRRVO S o VN Liswalls

P, = diag(5/3,3/4), P,=diag(2/3,3/2) (45)

and

be elliptic. This result was obtained in three stages.
First we showed that a nondegenerate fixed point with
minimal action of a twist map with negative definite
symmetric twist is hyperbolic in any number of dimen-

cinne. Far annlication to the cace of nerindic arhite we
SEUNS. SO qpputauvin i@ uiv Lase Ui peiivGiv VIO v

noted that if the twist is not definite or not symmet-

l i.. . » 1.raa 1 1 3

- ——
— 1/" - - . M
E !ﬁ ; aﬂ.rﬁsv '-_‘nt_-“n-u- do g ls 01

o iei Iir B, = dlag(—1,—1 i, we nave [0 g0 [0 period

which are symmetric negative definite twist matrices
as long as |b| < 1/2. The resulting matrix M, (1)

is posmvc definiie. However, the resulting multipliers

fixed points that are not hyperbolic, provided the La-
grangian is bounded from below. Our main point was
to show that there exist maps whose minimal fixed
PPy 1 i 1. L.& ﬁ 1 * 2 1

TRAIMW A & REL pvasvawsesteay ava

of M,(1) are given by

4y v waaw wapywasssessesas

(9/\2——21A+1)(8A2—18A+1)=0, 47)

which are all p

while the multipliers are given

-

hig nnﬁ (A'(Q\ anptaina amlir

PULIVLIY VL UL wav Bt

In order to show this, we first derived the interesting
result that in the neighborhood of a minimal periodic
orbit the iteration of a twist map is again a twist map,
which is not always true globally. The key to this ob-
servation was the use of Schur’s complement to recur-

s1ve1y reduce the dlmensmn of the Hessmn of the pe-
> e '--‘ v

th ouro] 1 ek Y

L s

72 2

Ps={5 38

(49)

DL AUUHVIIVUD aglallglall HUWD LUl WiiC LG H-
mizing orbits are not hyperbolic. Our result for maps

Since the elgenvalues of some P; have to be qu1te dif-

| p—RT A 2

it amounts to treating Lagrangians with explicit time

20| 0 0080 | G 70 koo i el — e
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