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Abstract Deliberative decisions based on an accumulation of evidence over time depend on 
working memory, and working memory has limitations, but how these limitations affect deliberative 
decision-making is not understood. We used human psychophysics to assess the impact of working-
memory limitations on the fidelity of a continuous decision variable. Participants decided the 
average location of multiple visual targets. This computed, continuous decision variable degraded 
with time and capacity in a manner that depended critically on the strategy used to form the deci-
sion variable. This dependence reflected whether the decision variable was computed either: (1) 
immediately upon observing the evidence, and thus stored as a single value in memory; or (2) at the 
time of the report, and thus stored as multiple values in memory. These results provide important 
constraints on how the brain computes and maintains temporally dynamic decision variables.

Editor's evaluation
This paper employs sophisticated modeling of human behavior in well-controlled tasks to study how 
limitations of working memory constrain decision-making. Because both are key cognitive processes, 
that have so far largely been studied in isolation, the paper will be of broad interest to neuroscien-
tists and psychologists. The observed working memory limitations support previous findings and 
extend them in critical ways.

Introduction
Many perceptual, memory-based, and reward-based decisions depend on an accumulation of 
evidence over time (Brody and Hanks, 2016; Gold and Shadlen, 2007; Ratcliff et al., 2016; Shadlen 
and Shohamy, 2016; Summerfield and Tsetsos, 2012). This dynamic process, which can operate on 
timescales ranging from tens to hundreds of milliseconds for many perceptual decisions to seconds 
or longer for reward-based and other decisions (Bernacchia et al., 2011; Gold and Stocker, 2017), 
requires working memory to maintain representations of new, incoming evidence and/or the aggre-
gated, updating decision variable. Working memory is constrained by capacity and temporal limita-
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For spatial working-memory tasks, the precision of working memory for perceived spatial locations 
is often well described by diffusion dynamics (Compte et  al., 2000; Kilpatrick, 2018; Kilpatrick 
et al., 2013; Laing and Chow, 2001) that are commonly implemented in ‘bump-attractor’ models of 
working memory (Compte et al., 2000; Constantinidis et al., 2018; Laing and Chow, 2001; Riley 
and Constantinidis, 2016; Wei et al., 2012; Wimmer et al., 2014). Our analyses built on this frame-
work by examining memory diffusion dynamics for the different task conditions and potential decision 
strategies. For the conditions we tested, most participants’ behavior was well fit by one of two distinct 
strategies, each with its own constraints on decision performance based on different working-memory 
demands. The first strategy was to compute the decision variable (mean disk angle) immediately upon 
observing the evidence (individual disk angles), and then store that value in working memory in a 
manner that, like for the memory of a single perceived angle, could be modeled as a single particle 
with a particular diffusion constant (Average-then-Diffuse model; AtD). The second strategy was to 
maintain representations of all disk locations in working memory, modeled as separate diffusing parti-
cles, and then to combine them into a decision variable only at the time of the decision (Diffuse-then-
Average model; DtA). Such a strategy results in an effective diffusion constant for the average that 
is inversely related to the number of items. Our results show that like perceived locations, memory 
for computed mean locations degraded with increased set size (of relevant information), and delay 
between presentation and report. However, the degree of degradation depended on the strategy 
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we measured the error between reported and probed angles as a proxy for working-memory repre-
sentations and inferred rates of memory degradation (diffusion constants) from the increase in vari-
ance of these errors over time within a framework of diffusing-particle models. Below we first describe 
the model framework, detailing its key assumptions and predictions. We next describe results from 
Simultaneous conditions, in which all items were presented simultaneously at the beginning of each 
trial, which demonstrate how capacity and temporal constraints on working memory relate to the 
accuracy of computed decision variables. We then describe results from Sequential conditions, in 
which one item was presented after the others in each trial, which demonstrate how capacity and 
temporal constraints affect the process of evidence integration over time.

Diffusing-particle framework and predictions
Within our diffusing-particle framework, the memory of an item is represented by the location of a 
diffusing particle. This representation allows us to quantify the corruption (i.e., reduced precision) of 
the memory by two distinct sources of noise. The first is described by a static, additive term (η1) that 
encompasses all potential one-time noise sources within a trial including noise associated with the 
sensory encoding and the motor response. The second is the dynamic degradation of memory preci-
sion over time that is modeled as the diffusion of the particle (Figure 2a). This diffusion corresponds 
to an increase in variability over time that is linear, with a slope equal to the diffusion constant (σ1

2; 
Figure 2b). Consistent with past modeling studies (Bays et al., 2009; Brady and Alvarez, 2015; 
Koyluoglu et al., 2017; Wei et al., 2012), we accounted for the decrease in working-memory fidelity 
with item load by incorporating item number (N 
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of averaging, and AtD produces a lower σMN
2 and less variable responses than DtA. A summary of all 

framework variables can be found in Table 1.
To summarize, our two models describe two different possible ways for decision-relevant informa-

tion to be stored in working memory prior to executing a decision. The different storage strategies 
result in different patterns of memory degradation, corresponding to trial-to-trial variability (impreci-
sion) of decision reports that increase as a function of the length of the within-trial delay period. For 
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the AtD model, the individual pieces of information are immediately combined into a single decision 
variable that is then stored in memory. Thus, the rate of degradation of an estimated average is 
identical to the rate of degradation of a single item. In contrast, for the DtA model, all of the relevant 
pieces of information are stored in memory and then combined only at the time of indicating the 
decision. Thus, the rate of degradation of an estimated average is inversely proportional to the rate 
of degradation of each item held in memory. We used fits of these models to performance data from 
individual participants to distinguish different patterns of memory degradation and therefore different 
storage strategies.

Simultaneous condition behavior
When all disks were presented simultaneously, performance was consistent with several key predic-
tions of the particle model. Specifically, the difference in reports of Perceived spatial angles and the 
true probed location (i.e., the response error) tended to be unbiased, in that the mean error across 
participants was not reliably different from 0 (Figure 3a, full distributions in Figure 3—figure supple-
ment 1, individual participant mean errors in Figure 3—figure supplement 2). However, the variance 
of these errors increased roughly linearly over time (Figure 3c), like the location of a diffusing particle 
or bump attractor (Compte et al., 2000; Kilpatrick, 2018; Kilpatrick et al., 2013; Laing and Chow, 
2001). This error variance depended systematically on set size (Figure 3c). However, the change in 
error variance over time (slope of variance increase) did not depend on set size (ANOVA, significant 
effect of set size, F(2,32)=83.87, p=1.88e−13, and delay, F(2,32)=29.55, p=5.37e−08, but no signif-
icant interaction between set size and delay, F(4,64)=1.36, p=0.256). Errors in reports of Computed 
(i.e., inferred mean) spatial angles relative to true mean angles showed similar trends, albeit with a 
much weaker dependence on the number of items. Specifically, Computed angle reports were also 
unbiased (mean error from the true value was not reliably different from 0; Figure 3b, Figure 3—
figure supplements 1 and 3) but degraded (became more variable) with a roughly linear increase 
in variance over time (Figure 3d). Error variance in the report of the Computed average was higher 
at higher set sizes (set size 5 had higher variances), but the rate of degradation in accuracy did not 
depend on set size (ANOVA, significant effect of set size, F(2,32)=13.53, p=5.515e−5, and delay, 
F(2,32)=130.79, p=4.441e−16, but not their interaction, F(4,64)=0.538, p=0.708).

Table 1. Descriptions of all framework and model parameters.
Fit parameters are shown on the top. Derived parameters used in other analyses and descriptions are shown on the bottom. 
Variations used to model Sequential conditions are shown to the right.
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summarized in Figure 4c and f, thus support the idea that for most participants, their behavior was 
well captured by their better-fitting model.

Summaries of the predicted report-error variances by the AtD and DtA fits for well-fit partici-
pants are shown in Figure 5. Overall, the model predictions qualitatively match participant behavior. 
In general, [(Fihehavior was )redicted ry tdif18 (efusons cns tnts ahat fwe)18 (e she msamefor weihe r one)]TJ
0.105 Tw 0 -1.333 Td
[(IPe)18 (eceveld locaions r whe moean Computld locaions basld ns two r w037)v idtems (i.e.,partll,l plins bn 
Iigure 5
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p=0.029). We also found these results were robust to uncertainty associated with model identifiability 
(participant-wise identifiability is given in Figure 2—figure supplement 1). Specifically, given different 
possible distributions of underlying strategy prevalence (proportions), the probability of obtaining 
the empirically observed distributions of models shown in Figure 6a for either set size while consid-
ering the average model identifiability was peaked near the observed strategy proportions. This result 
demonstrates that the observed proportions were not likely obtained due misidentification-related 
chance. These probabilities distributions were also highly non-overlapping, which is consistent with a 
different prevalence of strategy use at the two different set sizes (Figure 6b).

These differences in strategy use did not correlate with the ages of the participants (Pearson 
correlation, Figure 6—figure supplement 1, p>0.20). These findings suggest that working-memory 
load might have affected our participants’ decision strategies, such that a higher load corresponded 
to an increased tendency to discard information about individual samples (disk locations) and hold 
only the relevant computed decision variable in memory.

Sequential condition behavior
For the Sequential condition, we separately analyzed errors for Perceived reports of disks presented 
at the beginning (Early) or middle (Late) of a trial. Early Perceived reports tended to be relatively unbi-
ased (two-sided t-test for H0: mean error=0, p>0.05; Figure 7a, full distributions in Figure 7—figure 
supplement 1; individual participant mean errors in Figure 7—figure supplement 2a-d) but became 
more variable over time in a roughly linear manner (Figure 7d), consistent with the predictions of 
the particle-
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Sequential condition model validation
The Sequential condition models also make predictions about the relationship between the diffusion 
constants of remembered Computed and Perceived values. Once again, we assessed how well partic-
ipant behavior matched these assumptions, detailed in Equation 11 for AtD and Equation 12 for DtA 
(Figure 8). We fit a line to the measured variances in reporting error as a function of delay for a given 
set size in both Perceived and Computed Sequential blocks to estimate the change in variance over 
time (the empirical diffusion constant estimates: ‍̂σ‍12, ‍̂σ‍NE

2, ‍̂σ‍NL
2, ‍̂σ‍MN-seq

2, where N=2 or 5 for the two set 
sizes). We then compared the difference of these empirical estimates to the predictions of the best-fit 
model for each participant (Figure 8).

In general, the participant data conformed to the model predictions of the best-fit model for 
each participant, despite substantial individual variability. For participants whose data were best fit by 
the AtD model (n=9 for both set sizes), the difference between empirical estimates of the diffusion 

Figure 8. Comparisons of empirical and model-based diffusion constants. In (a, b, d, e), the abscissa shows the difference between: (1) empirical 
estimates of the diffusion constant for a Computed value measured by fitting a line to measured variance as a function of delay time for set size 2 
(‍σ‍M2

2, a, b) or 5 (‍σ‍M5
2, d, e), and (2) the empirical estimates of the diffusion constant for a single Perceived value (‍σ‍12) multiplied by the appropriate factor 

for the set size. The AtD model predicts a difference of 0. The ordinate shows the difference between: (1) the empirical estimate of Computed diffusion 
constants ‍σ‍M2

2 or ‍σ‍M5
2, and (2) the empirical estimates of the diffusion constant of a Computed value based on the DtA hypothesis. The DtA model 

predicts a difference of 0. Points are data from individual participants, separated by whether they were best fit by the AtD (a, b) or DtA (d, e) model for 
the given set-size condition. Lines are 95% confidence intervals (CIs) computed by simulating data using the best-fit parameters for the given fit and 
repeating the empirical estimate comparison procedure. Close symbols indicate participants who fell within the 95% CI for their best-fit model. (e, f) 
Distance of each participant’s empirically estimated diffusion constant relationships from those predicted by AtD or DtA (i.e., distances from the x=0 and 
y=0 lines, respectively, in (a, b, d, e)), for set sizes 2 (c) and 5 (f). AtD, Average-then-Diffuse; DtA, Diffuse-then-Average.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Participant-specific estimates of A from the Sequential condition for set sizes 2 (a) and 5 (b).

https://doi.org/10.7554/eLife.73610
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their model predictions (Figure 9a, e, c and g). Conversely, participants’ best fit by DtA exhibited 
diffusion constants that were notably smaller for Computed mean locations versus single Perceived 
locations (Figure 9j and l; lower slope of cyan/blue line vs. purple line). The corresponding average 
predictions by the best fit DtA models for error variance of Early and Late items also aligned with 
participant data from DtA fit participants (Figure 9b, f, d and h). We also compared the variance in 
AtD and DtA participants’ reports of the mean across delays using an ANOVA and multiple compari-
sons but found no significant differences in variability at any delay between models (p>0.05).

Sequential condition strategy comparisons 

Across the population, participants had roughly equal tendencies to use either one of the two strat-
egies (AtD or DtA) for the two set-size conditions (
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multiple quantities stored at once. Third, our DtA model also assumed that each item was stored 
individually. Alternatively, items could have been discarded or merged (chunked) (Krishnan et al., 
2018; Wei et  al., 2012), leading to different memory loads which could also affect performance. 
Fourth, most of our participants used strategies that were well described by the AtD or DtA model. 
However, under certain conditions (i.e., Sequential, set size 5) some participants seemed to use hybrid 
strategies. This kind of strategy would suggest extensive flexibility in when and how evidence is incor-
porated into computed decision variables, thereby placing potentially complex demands on working 
memory.

Both of our primary models were based on assumptions of a drifting memory representation. 
This random drift is traditionally associated with attractor models of working memory (Bays, 2014; 
Compte et al., 2000; Macoveanu et al., 2007; Wei et al., 2012) that have been used extensively to 
describe the underlying neural mechanisms (Funahashi et al., 1989; Shafi et al., 2007; Takeda and 
Funahashi, 2002; Wimmer et al., 2014). In these models, neural network activity is induced by an 
external stimulus and then maintained via excitatory connections of similarly tuned neurons and long-
ranged inhibition. Random noise causes the center of this activity (which represents the stimulus) to 
drift in a manner that, dependent on the implementation, can depend on the delay duration, set size, 
and/or their interaction (Almeida et al., 2015; Bays, 2014; Koyluoglu et al., 2017). A recent imple-
mentation even can naturally compute a running average based on sequentially presented informa-
tion (Esnaola-Acebes et al., 2021). Our results imply that such models should be extended to support 
the flexible use of different strategies that govern when and how incoming information is used to form 
such averages. It will be interesting to see if such a flexible model can account for neural activity in the 
dorsolateral prefrontal cortex, which includes neurons with persistent activity that has been associ-
ated with both spatial working memory (Compte et al., 2000; Constantinidis et al., 2018; Riley and 
Constantinidis, 2016; Wei et al., 2012; Wimmer et al., 2014) and the formation of decisions based 
on an accumulation of evidence (Curtis and D’Esposito, 2003; Heekeren et al., 2006; Heekeren 
et al., 2008; Kim and Shadlen, 1999; Lin et al., 2020; Philiastides et al., 2011).

In conclusion, we found that in this spatial, continuous task, participant accuracy for both perceived 
and computed values was subject to working-memory limitations of both time and capacity. Addi-
tionally, we found behavior that was consistent with both the storage strategies we investigated. The 
fact that different participants employed different strategies for storing a computed value (such as 
a decision variable) and that these strategies have different consequences on overall accuracy has 
important implications for not only future neural network models of working memory, but also for 
future computational models of decision-making.

Materials and methods
Human psychophysics behavioral task
We tested 17 participants (4 males, 12 females, 1 chose not to answer; age range=22–87 years). The 
task was created with PsychoPy3 (Peirce et al., 2019) and distributed to participants via Pavlovia.org, 
which allowed participants to perform the task on their home computers after providing informed 
consent. These protocols were reviewed by the University of Pennsylvania Institutional Review Board 
(IRB) and determined to meet eligibility criteria for IRB review exemption authorized by 45 CFR 
46.104, category 2.

Participants were instructed to sit one arm-length away from their computer screens during the 
experiment and to use the mouse to indicate choices. Each participant completed 1–2 sets of four 
blocks of trials in their own time.

The basic trial structure is illustrated in Figure 1. Each trial began with the presentation of a central 
white fixation cross (1% of the screen height). The participant was instructed to maintain fixation on 
this cross when not actively responding. The participant began each trial by placing the mouse over 
the cross and clicking, to allow for self-pacing and pseudo-fixation. Initiating a trial caused a white 
annulus of radius 25% of the screen height to appear. A block-specific memory array appeared 250 
ms later, centered at an angle chosen uniformly and at random on the annulus. The array consisted 
of 1, 2, or 5 colored disks sized 1.5% screen in diameter. The angular difference between any two 
adjacent disks was at least 6°, and between the two most distal disks was at most 60°. The disks from 
clockwise to counter-clockwise were always presented in the same order: green, red, blue, magenta, 
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the effects of set size, delay duration, and task context on response variability using a two-way 
repeated measures ANOVA. On Simultaneous Perceived and Computed blocks, we used a 3 (delay 
duration: 0, 1, or 6 s) × 3 (set size: 1, 2, or 5 disks) within-participant design. On Sequential Perceived 
blocks, we used a 2 (delay duration: 1 or 6 s) × 3 (set size: 1, 2, or 5 disks) within-participants design 
for stimuli presented at the beginning of the trial (Early) and a 2 (delay: 0.5 or 3 s) × 2 (set size: 2 or 5 
disks) design for stimuli presented halfway through the trial (Late). On Sequential Computed blocks, 
we used a 2 (delay duration: 1 or 6 s) × 3 (set size: 1, 2, or 5 disks) within-participants design. When 
the comparison included set size=1, data were always taken from the Simultaneous Perceived block.

To assess performance differences based on strategy use, additional analyses were performed once 
the data had been fit to the models and the best fit model had been selected (see below). These anal-
yses included an assessment of response error variability in the Computed blocks using a 2 (model: 
AtD or DtA) × 3 or 2 (delay: 0, 2, or 6 s Simultaneous condition, 1 or 6 s for Sequential) ANOVA with 
multiple comparisons to identify differences. To interrogate best fit parameter differences, two-sided 
t-tests were used to see if the mean difference in best-fit parameter between AtD and DtA partici-
pants was significantly different from 0 for both Simultaneous and Sequential conditions. To assess 
learning effects, a two-sided, paired t-test was used to see if the mean or standard deviation of error 
responses in set size 5 Sequential conditions differed between the first and second half of trials (we 
found no difference at either delay: for 1 s delay p=0.67 and 0.11 for mean and standard deviation, 
respectively; for 6 s delay p=0.75 and 0.98 for mean and standard deviation, respectively).

Model-based analyses
Our models were based on principles of working memory that are well described by bump-attractor 
network models (Compte et al., 2000; Laing and Chow, 2001; Wimmer et al., 2014). In such models, 
stimulus location is represented by a ‘bump’ in activity from neurons tuned to that and similar loca-
tions. These neurons recurrently activate each other, maintaining a bump of activity even after stim-
ulus cessation. However, because of the stochastic nature of neural activity and synaptic transmission 
(Faisal et al., 2008), there is variability in which neurons have the most activity at any given time (and 
thus are the center of the bump representing the stimulus). This variability in bump center corre-
sponds to variability in the location representation and a degradation of the memory representation 
over time. The dynamics of this bump can be described as a diffusion process that obeys Brownian 
motion (Compte et al., 2000; Kilpatrick, 2018; Kilpatrick et al., 2013; Laing and Chow, 2001). We 
used this simplified description in our models as follows.

Perceived values in working memory
A single point (i.e., the central spatial location of a single disk), x1, is assumed to be represented in 
working memory by ‍x‍t,1, where t represents the time since the removal of the stimulus. We assume 
that ‍x‍t,1 evolves like a sample from a Brownian-motion process. Specifically, when ‍x1‍ is observed, it is 
encoded with some perceptual noise, ηp. Therefore, at time zero, ‍x‍0,1 ~ N(x, ηp). This representation 
accumulates noise over time with some diffusion constant, σ1

2, further degrading the representation 
of ‍x‍t,1 from x1 such that ‍x‍t,1 ~ N(x1, ηp+t*σ1

2). There is additional motor noise in the participant’s report, 
rt,1, and we denote the variance of this motor noise by ηm. Mathematically, it is equivalent to add the 
motor noise at the beginning or the end of the diffusion of ‍x‍t,1 when considering the report, rt,1. In our 
model, we thus represent the sum of the perceptual and motor noise as a single, static noise term. 
Hence, we show simulated trajectories of ‍
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corresponding to the increased memory load. The representation of the Late item then diffuses for 
only half of the delay time, T (see Figure 2d and e). We formalized this process with the following 
model for the report error of the Early (eT,NE) and Late (eT,NL) items:

	﻿‍ eT,NE ∼ N(0, ηNE + T/2∗σ2
1
∗(N − 1)A + T/2∗σ2

1
∗NA)

�/

2
1

/
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following conditions. Perceived: delays 1, 3, and 6 s; array size 1 (Equation 3a). Perceived: delays 3 
and 6 s, array size N for both Early (Equation 6a) and Late (Equation 6b) items. Computed: delays 3 
and 6 s, array size N (Equation 7 for AtD or Equation 8 for DtA).

Because the mean error for each individual participant was not always 0, when fitting the AtD and 
DtA models we used the empirical mean error from the condition being fitted as a fixed bias term in 
the model. Mean error and CIs for each participant for each condition are shown in Figure 3—figure 
supplements 2 and 3; Figure 3—figure supplements 2 and 3.

We obtained separate maximum-likelihood fits for AtD and DtA models for each individual partic-
ipant, using the function fmincon in MATLAB to minimize the summed negative log-likelihood of 
obtaining the observed errors for a given condition according to the above equations. Initial param-
eter values were randomized and the fitting repeated to avoid local minima. Because all models within 
a given condition had the same number of parameters, we compared log-likelihoods to determine the 
best-fitting model for a given participant. Because the number of parameters is the same, comparing 
likelihoods produces equivalent model selection to BIC or AIC.

Assessing model assumption and identifiability
To assess how well each participant’s data matched the assumptions of the AtD and DtA models, we 
also fit a line to the variances of response errors across delays for a given condition for a given partic-
ipant to obtain empirical estimates of the various diffusion constants (e.g., slope of lines in Figure 2b; 
empirical estimate of a Perceived value, ‍

https://doi.org/10.7554/eLife.73610
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relationships. Participants whose empirical diffusion constant relationships fell within the central 95% 
of the simulated expected range were considered well fit by their model.

To assess model identifiability, for each participant and condition, we fit both models to the results 
of each set of 1000 simulations generated using the best-fitting parameters from the best-fitting 
model for that participant and condition. We used the log-likelihoods to determine the best model 
for each simulation and determined the percentage of correctly identified models. We used these 
 likelihoo35ew tweTh2eobs[, for each parnd condition,9 Tn af1ditd theg pgesizr40 -1.359 Td
[(ofC  Rand conditiohaterm)]Tg pa/Aabed timis 
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Additional files
Supplementary files
•  Transparent reporting form 

Data availability
All analysis code is available on GitHub (https://github.com/TheGoldLab/Memory_Diffusion_Task, 
copy archived at swh:1:rev:69cee7449f92f9d19148332979087bf4e6a9f867). Data used for figures will 
be made available on Dryad.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Schapiro K, Josic K, 
Gold J, Kilpatrick Z

2022 Memory array locations, 
delay times, and participant 
response

https://​doi.​org/​
10.​5061/​dryad.​
w3r2280rm

Dryad Digital Repository, 
10.5061/dryad.w3r2280rm
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