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how our results would be affected by such correlations, al-
though we expect that under certain conditions they remain
qualitatively true.

Our analysis of the fastest and slowest decisions joins sev-
eral recent works which highlight the importance of extreme
statistics in diverse biophysical systems. For example, the
earliest receptor bindings may enable a single cell to locate
a source [37,38] much more accurately than later receptor
bindings [39]. The fastest receptor activations may also con-
tribute to the effectiveness of kinetic proofreading for antigen
discrimination by T cells [40], while the slowest primordial
follicle growth activations determine menopause timing [41]
and their extreme statistics shed light on the apparent “waste-
ful” follicle oversupply [42].

Ramping activity of individual neurons during decision
making has been observed across the brain [43,44] (although
see Ref. [45]). Such dynamics may reflect the underlying evi-
dence accumulation process preceding a decision and is often
modeled by a drift-diffusion process. Decisions are thought
to be triggered by the elevated activity of sufficiently many
choice-related neurons [46]. These results combined with our
previous work on the impact of correlations [11] suggest that
early decisions tend to exhibit lower accuracy. However, a key
feature of neural circuits is their recurrent connectivity, which
could help neural circuits reduce or even prevent the negative
effects of extreme events [47].

Our theory also applies more generally to independently
evolving drift-diffusion processes on possibly unbounded
domains [48]: In large populations early threshold cross-
ings reflect only the initial states, agnostic to other system
attributes, while late crossings are independent of initial
states and reflect the quasistationary distribution. Hence, early
crossings reflect initial biases providing fast reactions needed
for time-sensitive biophysical processes [49]. If time allows,
then quorum sensing processes that weight passages by order
could be used [50], managing population level trade-offs be-
tween speed and accuracy.
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APPENDIX A: MATHEMATICAL PRELIMINARIES

Suppose {(τn, Zn)}n�1 is an independent and identically
distributed (iid) sequence of realizations of the pair of (pos-
sibly correlated) random variables (τ, Z ). We have in mind
that τ is the decision time [or first passage time (FPT)] of
some decider whose stochastic evolution of beliefs is denoted
by {X (t )}t�0 and Z is a vector containing information about
this decider, such as their random initial position, drift, diffu-
sivity, and decision made. Define the cumulative distribution
function (CDF) of τ ,

F (t ) := P(τ � t ).

Further, for any event E that is in the σ algebra generated by
Z , define

FE (t ) := P(τ � t ∩ E ).

In words, E is any event for which we can know whether
or not it occurred by knowing Z . For example, we are inter-
ested in events E like E = {X (0) = θ/2}, E = {X (0) � 0},
E = {X (τ ) = θ}, etc.

For a given N � 1, let n( j) ∈ {1, . . . , N} denote the (ran-
dom) index of the jth fastest decider out of the first N deciders
to make a decision. That is, suppose we order the first N FPTs
(or first decision times),

T1,N � T2,N � · · · � TN−1,N � TN,N ,

where Tj,N denotes the jth fastest FPT,

Tj,N := min
{{τ1, . . . , τN }\ ∪ j−1

i=1 {Ti,N }}, j ∈ {1, . . . , N}.
(A1)

Then n( j) is such that

τn( j) = Tj,N . (A2)

In the examples of interest, the FPTs, τ, have continuous
probability distributions (i.e., F (t ) is a continuous function)
so that the event τn∗ = τn′ < ∞ for n∗ �= n′ has probability
zero so there is no ambiguity in Eq. (A2).

Since we have the sequence {(τn, Zn)}n�1, we denote as En

the event E as it pertains to the nth element in the sequence
{(τn, Zn)}n�1. For example, if E = {X (0) = θ/2}, then En =
{Xn(0) = θ/2}. Similarly, En( j) is the event E as it pertains to
Zn( j).

Throughout the Appendix, we use the notation
∫

f (t ) dg(t )
to denote the Riemann-Stieltjes integral of a function f with
respect to a function g.

Proposition 1. For any j ∈ {1, 2, . . . , N} (denoting an
agent by the order j of their decision), we have that

P(En( j) ) = j

(
N

j

) ∫ ∞

0
[F (t )] j−1[1 − F (t )]N− j dFE (t ). (A3)

In the case j = 1 (i.e., the fastest decider), Proposition 1
implies

P(En(1) ) = N
∫ ∞

0
[1 − F (t )]N−1 dFE (t ). (A4)

Since 1 − F is a decreasing function, Eq. (A4) implies that
the short-time behavior of F and FE determine the large N
behavior of P(En(1) ). More generally, Proposition 1 implies
that the short-time behavior of F and FE determine the large
N behavior of P(En( j) ) for 1 � j 
 N .

In the case j = N (i.e., the slowest decider), Proposition 1
implies

P(En(N ) ) = N
∫ ∞

0
[F (t )]N−1 dFE (t ). (A5)

Since F is an increasing function, Eq. (A5) implies that the
large-time behavior of F and FE determine the large N be-
havior of P(En(N ) ). More generally, Proposition 1 implies that
the large-time behavior of F and FE determine the large N
behavior of P(En(N− j) ) for 1 
 N − j.
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APPENDIX B: SOME INTEGRAL ASYMPTOTICS

The following proposition is useful for estimating the large-N behavior of some integrals of the form in Eq. (A3) and was
proved in Ref. [48] (see Proposition 2 in Ref. [48]). Throughout the Appendix, “ f ∼ g” denotes f /g → 1 (e.g., as N → ∞ or
as t → 0).
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With these estimates, we can apply Theorem 1 to obtain estimates that the fastest decider(s) have extreme initial beliefs. In
particular, suppose we want to estimate

P(a + ε < Xn(1)(0) < b − ε) for some small 0 < ε 
 1,

which is the probability that the fastest decider does not have extreme initial beliefs. If we define the event

E = {a + ε < X (0) < b − ε},
then using the notation of Appendix A, we have that

FE (t ) := P(τ � t ∩ E ) =
∫ b−ε

a+ε

P(τ � t | X (0) = x)ν(x) dx ∼ t p
∫ b−ε

a+ε

A(x)ν(x)e−C(x)/t dx as t → 0+,

which can be estimated as above using Laplace’s method [53]. In particular, if b > |a|, then

FE (t ) ∼ A(b − ε)ν(b − ε)t p+1e−C(b−ε)/t as t → 0+,

assuming ν(b − ε) > 0, and similarly if |a| > b or |a| = b. With this short-time behavior of FE (t ), we can then plug this into
Theorem 1 to show that the first deciders have the most extreme initial beliefs.

APPENDIX F: HETEROGENEOUS POPULATION WITH MULTIPLE ALTERNATIVES

We next consider the generalized case where the beliefs of the agents in the population evolve as processes with (possibly
space-dependent) drift, diffusion coefficient, initial position, and even domain (in their own arbitrary space dimension d � 1).
Suppose the belief of the ith decider evolves according to the following d-dimensional SDE,

dXi = μi(Xi ) dt +
√

2Di dWi, (F1)

where μi : Rd → Rd is a possibly space-dependent drift, Di > 0 is the diffusion coefficient, and W (t ) ∈ Rd is a standard
Brownian motion in d-dimensional space.

Let L > 0 denote an agent’s (random) shortest distance they must travel to hit the closest target and let D > 0 denote the
agent’s diffusion coefficient. Define the random timescale

S = L2

4D
> 0.

Suppose that S has a discrete distribution on a finite set

0 < s0 < s1 < s2 < s3 · · · < sI ,

where

P(S = si ) = qi > 0,

I∑
i=0

qi = 1.

Since we have N � 1 iid agents indexed from n = 1 to n = N , we let Sn denote the value of S for the nth agent and Sn( j) the
value of S for the jth fastest to decide.

We have that [52]

lim
t→0+

t ln P(τ � t ) = −s0 < 0, lim
t→0+

t ln P(τ � t ∩ S = si) = −si < 0.

Hence, Proposition 1 and Theorem 2 imply that for any fixed j � 1 and i ∈ {1, . . . , I} and any ε > 0,

N1−si/s0−ε 
 P(Sn( j) = si ) 
 N1−si/sε
0 as N → ∞, (F2)

where we use the notation f 
 g to mean lim f /g = 0. That is, in more traditional notation,

N1−si/s0−ε = o(P(Sn( j) = si )) as N → ∞,

P(Sn( j) = si) = o(N1−si/s0+ε ) as N → ∞.

In the special case that the agents all move in one space dimension and the drifts are spatially constant (but may differ between
agents), we can get the constant and logarithmic prefactors on the decay of P(Sn( j) = si) as N → ∞.

The result in Eq. (F2) says that in a large population if all the agents have the same diffusion coefficient, then the fastest
deciders started closest to their decision thresholds (targets). If we allow the diffusion coefficients to vary between agents, then
(F2) implies that the fastest deciders started close to their decision thresholds and/or they had big diffusion coefficients.

024305-10



FAST DECISIONS REFLECT BIASES … PHYSICAL REVIEW E 110, 024305 (2024)

APPENDIX G: SLOWEST DECIDERS

Suppose the beliefs of the iid agents diffuse in some d-dimensional spatial domain U ⊂ Rd and can be absorbed at one of
m � 2 targets V0, . . . ,Vm−1 and let κ ∈ {0, . . . , m − 1} indicate which target the decider eventually hits. Here, we will think of the
m targets as parts of the d − 1 dimensional boundary of the domain, and assume that hitting one of the targets triggers a decision.
Following Refs. [54,55], suppose the beliefs of the deciders evolve as stochastic process {X (t )}t�0 that diffuse according to the
SDE

dX (t ) = −∇V [X (t )] dt +
√

2D dW (t ), (G1)

with reflecting boundary conditions. In Eq. (G1), the drift term is the gradient of a given potential, V (x), and the noise term
depends on the diffusion coefficient D > 0 and a standard d-dimensional Brownian motion (Wiener process) {W (t )}t�0. The
survival probability conditioned on the initial position,

S(x, t ) := P(τ > t | X (0) = x),

satisfies the backward Kolmogorov (also called backward Fokker-Planck) equation,

∂

∂t
S = LS, x ∈ U,

S = 0, x ∈ targets,

∂

∂n
S = 0, x ∈ reflecting boundary (if there is one),

S = 1, t = 0. (G2)

In Eq. (G2), the differential operator L is the generator (i.e., the backward operator) of Eq. (G1),

L = −∇V (x) · ∇ + D�,

and ∂
∂n is the derivative with respect to the inward unit normal n : ∂U → Rd .

Using the following weight function of Boltzmann form,

ρ(x) := e−V (x)/D∫
U e−V (y)/D dy

, (G3)

one can check that the differential operator L is formally self-adjoint on the weighted space of square integrable functions (see,
for example, Ref. [55]),

L2
ρ (U ) :=

{
f :

∫
U

| f (x)|2ρ(x) dx < ∞
}

,

using the boundary conditions in (G2) and the following weighted inner product,

( f , g)ρ := ( f , gρ) =
∫

U
f (x)g(x)ρ(x) dx,

where ( f , g) = ∫
U f (x)g(x) dx denotes the standard L2-inner product (i.e., with no weight function). Expanding the solution to

(G2) yields,

S(x, t ) =
∑
n�1

(un, 1)ρe−λnt un(x) =
∑
n�1

(un, ρ)e−λnt un(x), (G4)

where

0 < λ1 < λ2 � . . . , (G5)

denote the (necessarily positive) eigenvalues of −L. The corresponding eigenfunctions {un(x)}n�1 satisfy the following time-
independent equation:

−Lun = λnun, x ∈ U, (G6)

and identical boundary conditions as S. Further, the eigenfunctions are orthogonal and are taken to be orthonormal, which means
that

(un, um)ρ = δnm ∈ {0, 1}, (G7)

where δnm denotes the Kronecker delta function (i.e., δnn = 1 and δmn = 0 if n �= m).
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Further, it is straightforward to show that the probability that a decider reaches +θ before −θ conditioned on the initial belief
x ∈ [−θ, θ ] is

p1(x) := P(X (τ ) = +θ ) = 1

2

[
coth

(
θμ

D

)
− 1

]
e

μ(θ−x)
D

[
e

μ(θ+x)
D − 1

]
Therefore, applying (G11) and explicitly computing the integral yields

P(κn(N− j) = 1) →
∫ θ

−θ

p1(x)q(x) dx = 1

1 + e− θμ

D

= p1(0) as N → ∞.

Hence, the slowest deciders out of N � 1 deciders make a decision as if they were initially unbiased [i.e., as if X (0) = 0].

APPENDIX H: PROOFS

Proof of Proposition 1. Since {(τn, Zn)}n�1 are identically distributed, we have that

P(An( j) ) =
∑

distinct indices
n1 ,...,nN ∈{1,...,N}

P(max{τn1 , . . . , τn j−1} < τn j < min{τn j+1 , . . . , τ

j
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