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strained variations in appendix C. is stationary for all variations of (xg, X{,...,Xy)
with X, and x, held fixed. This yields the Euler—
Lagrange equations
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Theorem 1. True intersections of p,-extremizing (6.7) and x,, = xg + m. Then the first variation
rotational curves C and C* generated by an in- of the action
vertible circle map p belong to families which

are orbits under the area-preserving map 7. .,
Wonn EZF(xj,xj+l) (6.8)
To see this, let there be a true intersection at Jj=0

2 - 30‘ That is, let AY(6o) -, )0,'7 Thleinr ‘j‘e is zero because AY (6;) is zero. Calculating the
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ifold of this fixed ngint (The apticausal solu-

e ———— e - ettt

tion can be constructed from the stable mani-
T - pe——

—(2 - Lkyasx (x? = x}) + O(x*).
(9.18)

Note that the linear and cubic terms vanish for
k = 4 (the value at which the fixed point at the
origin becomes hyperbolic) provided a; remains
finite there. Also it turns out that a3 is very small
for moderate values of k.

Figure 8 also suggests that the part of the solu-
tion with support in intervals x € [-3, -} + 4],
x € [ —a,}1],0 < a < 3, is the same as the
reversible solution, o = Id, for which C is the
curve ¥ = ksin(2rx)/2n and C* is the x-axis,

=0.Th tion impli aos the

that the last endpoint, zf = (xo, ¥ ), lie on the
retrograde solution y = 2x, which implies the
relation between x; = —xp and a

ic_ sin2na = 4x; — ic—sin27«’.x1. (9.20)

2n 2

We can determine a and x, iteratively by guess-
ing a, then using eq. (9.20) to calculate x; and
testing to see whether zj = (-x;,—2x,) is on
the unstable manifold by iterating the inverse
composite map to form the sequence {z}} =
{(Az'<T=")"(z§)}. When a is chosen cor-
rectly, z; — ($—a,0) as n — oo. The endpoints
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rotation we have full control over their rotation port of the US National Science Foundation, un-

numbers. It is these solutions Wthh would ap- der grant NSF-DMS9001103.
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ized action—angle representation. One could use

a truncated Farey tree construction to define the Appendix A. Circle map identity

van-In

tween each resonance) and use the curves C, C*, used to prove relationships (sum rules) between

or the time-symmetric curve specified paramet- the Fourier coefficients of a circle map, its sum-

rically by x = X(0),y = % [Y,(0) + Y_(6)] difference representation and its inverse. We

to define a basic ladder of new momentum co- shall work in x-space, though similar relations

el el

ciently small 4. The transformation to the new
phase-space coordinates would then be com- f,:,‘,*
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ing to all irrational rotation numbers since these
are not in general smooth and are not continu-
ously connected to the resonance surfaces).

We have studied only the lowest order reso-

for any integrable function F(x) = f'(x). Here
x* — x is a shorthand for x () — x_(n). Equa-
tion (A.1) follows by recognizing that the inte-
grand is the perfect differential df (x* — x) and

npacc o dntall Tt on. 14 ln Sevtamaotin +33 Ay
i o m—verard ‘
a rotational invariant curve or a cantorus. In the
former case ¢, is obv10usly a local (and global) /
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tions as the control parameter 1s varied would
also be interesting to investigate, as well as the 1
implications of this method for the theory of 1 /F(x* —X) X ) + X)) (A2)
b z . .
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transport in area preserving maps.

In particular, choosing F(-) = - and n =

—1 ¢ i i i e L -
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