ࡱ> Z\Y 'bjbj## 4DA_A_t 1118iL,1sD    D D D D D D D)GI D! D  -D888   D8 D88J=BPNj*@BCCD0sDl@uJuJBuJB8 D DvsDuJ Y : ASEN 6365. Lidar Remote Sensing Syllabus, Fall 2024 Lecture: 11:45am"12:35 pm on MWF @ AERO 232 (Available for distance learning) Canvas course: ASEN 6365-001, 011 at  HYPERLINK "https://canvas.colorado.edu/" https://canvas.colorado.edu/ Instructor Teaching Assistant Professor Xinzhao Chu Logan Walthers Office Hours: In-person at classroom and over Zoom Prerequisites Ideally ASEN-6265 Fundamentals of Spectroscopy for Optical Remote Sensing would be the pre-requisition for this ASEN-6365 lidar class. But the spectroscopy class is very intense (regarded as one of the hardest classes in the department) and taught only biennially, so it is basically impossible to use it as the pre-requisition. Therefore, we have removed this requirement but knowing spectroscopy will make one understand lidar class way better and deeper than without spectroscopy background. We encourage students to gain basic understandings of general and modern physics, spectroscopy, and engineering (e.g., optical and atomic physics, photonics, laser basics, electrical, mechanical, and aerospace engineering as well as spectroscopy knowledge). If one does not have a background in some of these areas, please spend extra time on the related materials. This lidar class is a graduate class, and students are expected to work independently to solve problems. There are many resources, including the library, at your disposal. Furthermore, some basic knowledge of MatLab or Python coding is necessary for this lidar class because some homework assignments and the final project will need programming in compute code. Start to prepare yourselves and computers for this class. Course Objective LIDAR stands for Light Detection and Ranging, commonly known as Laser Radar in the past and now becoming very popular and even showing up in cell phones. It is not only replacing conventional sensors, but also creating new methods with unique properties that could not be achieved before. Lidar is extremely useful in atmospheric and environmental research as well as space exploration. It also has wide applications in industry, defense, military, and now daily life. For example, recent lidar observations made at McMurdo, Antarctica by the University of Colorado Boulder researchers and students have led to new science discoveries on thermosphere-ionosphere neutral metal layers and persistent gravity waves, which opens a new door to study the complex space-atmosphere interactions and coupled atmospheric processes that govern our planetary atmosphere and are essential to sustaining life. The new development in wind lidars, including both direct-detection and coherent-detection Doppler lidars, has enabled the applications of lidar for wind energy industry, aviation control, spacecraft positioning, and space monitoring of wind fields, etc. The lidar ranging is populating more and more cell phones. The spectroscopic methods applied in lidar systems are enabling identification of dangerous or pollutant species, easily finding wide applications in military, industry, environmental monitoring, and air quality control, etc. Our class objectives are to provide: Comprehensive, yet easily understandable, up-to-date understandings of lidar principles, technologies, and applications. Approaches and methodologies for quantitative lidar simulations, lidar sensitivity and error analyses, and lidar data retrievals. Basic understandings and methodologies of lidar instrumentation, lidar system designs, and lidar performance analyses. This class is based on the "Lidar Remote Sensing" classes offered in the past decade. In light of the new development of lidar technologies and applications through worldwide research, the course contents are updated to include new developments and directions, more sophisticated lidar simulation and sensitivity analysis, and possible new applications. Guest speakers will be invited to present the lidar research in breadth. The class format will be interactive, engaging students in discussions. We also plan to provide field trips to real lidars. Class Format and Expectations The class will be comprised of regular lectures three times per week. Reading and homework will be assigned. There will be one take-home midterm exam (CU honor code applies) and one final project. Guest lectures may be introduced to illustrate some novel applications of spectroscopy in modern optical and laser remote sensing. Laboratory trips may be arranged to see the real applications in Professor Chus Group if the schedules and conditions work out. Besides attending/listening to lectures and studying lecture notes well, graduate students are expected to study the textbooks and lecture chapters carefully, gaining deeper understandings than just finishing homework/exam assignments. It is these deep understandings that will enable our students to acquire the abilities for lidar research and/or applications of lidars to discover the world. Course Content 1. Introduction A. Concept and classification of remote sensing B. Overview of lidar remote sensing 2. Fundamentals of Lidar Remote Sensing A. General picture of lidar remote sensing B. General lidar equation C. Physical processes involved in different lidars D. General lidar architecture E. General solutions of lidar equation F. Laser Basics 3. Lidar Equation, Data Inversion and Error Analysis A. From photon counts to physical parameters using lidar equation B. General data inversion procedure C. General error analysis procedure 4. Topical Lidars and Their Applications A. Lidars for Aerosol/Cloud Measurements B. Lidars for Constituent Measurements C. Lidars for Temperature Measurements D. Lidars for Wind Measurements E. Lidars for Solid Target Detection F. Laser Range Finding / Laser Altimeter G. CW-Laser Imaging Lidars 5. Lidar Design and Performance Analysis A. Overall Considerations B. Transmitter Considerations C. Receiver and Data Acquisition Considerations D. Lidar Performance Analysis and Simulation 6. Lidar Future Outlook Where will we go from here? Open discussions with students and experts will provide an overview for possible future development and application of laser remote sensing technologies. Texts Required Textbook: Laser Remote Sensing, Edited by Takshi Fujii and Tetsuo Fukuchi, Published by CRC Press, Taylor & Francis Group, ISBN: 0-8247-4256-7, 2005. The eBook version of Laser Remote Sensing is available through the University library. This text was chosen for its descriptions of modern lidars and applications. During the course of the semester chapters will be assigned for reading requirements. Supplementary material will also be provided during the course to provide more clarity or depth to a topic. There are some books on lidars that you can access through the Engineering Library to provide a different point of view on the material we will cover in class. Several recommended books are Atmospheric Lidar Fundamentals: Laser Light Scattering from Atoms and Linear Molecules, by Chiao-Yao She and Jonathan S. Friedman, Cambridge University Press, ISBN 978-1-316-51823-6, 2022. Lidar: Range-resolved optical remote sensing of the atmosphere, edited by Claus Weitkamp, published by Springer, ISBN: 0-387-40075-3, 2005. Laser Remote Sensing: Fundamentals and Applications, by Raymond M. Measures, Wiley-Interscience, New York, ISBN: 0-89464-619-2, 1984. Solid-State Laser Engineering, by Walter Koechner, Springer, e-ISBN: 0-387-29338-8, 2006. Course Grading 50 Homework 20 Midterm Exam 30 Final Project 100 Total     ASEN 6365 Lidar Remote Sensing Fall 2024 Chu ASEN6365 Lidar Remote Sensing (Syllabus)  PAGE 1 @Tfhj|~    < P V ^ `  F G ǾǵǾǵǘǏwllf h9?CJh9hR_OJQJh9h0JCJjh9hCJUh9hCJh9hR_CJh9hDpCJh9hCJPJh9hCJh9hy;CJh9hCJh9hOJQJh9hOJQJh9hCJ$OJQJh9hJCJ$OJQJ(@hj    F G { | xy$a$gd $d a$gd4Nhgdgd+mxgdi$a$gdR_gd9?gdR_gdR_  !gd !$a$gdG U p y z { | }  }   % X c d z }ʾ֋whh9hB*CJ_Hphh9hOJQJh9hiCJ hiCJ h`3CJ h CJ hH9CJh9hR_CJ h-CJ hnamCJ h+mCJh9hR_5CJ\h9h9?5CJ\ hR_CJh9hrFCJh9hCJh9hQSCJh9hCJ(89:}auwxykls}"#$'ɽɮrrrrcTch9h_vB*CJ_Hphh9h5B*CJ_Hphh9hB*CJ_Hphh9hkhtB*CJ_Hphh9h?B*CJ_Hphh9h2LB*CJ_Hphh9h8CB*CJ_HphhBIB*CJ_Hphh9hR B*CJ_Hphh9hB*CJ_Hphh+mB*CJ_HphhH9B*CJ_Hph')Uu!"]} 9>?@AEKfgCDGK_`ҷҨҨҨҙҊ{l`````h3 B*CJ_Hphh9hMB*CJ_Hphh9hT7B*CJ_Hphh9hB*CJ_Hphh9hB*CJ_Hphh9h=B*CJ_HphhbB*CJ_Hphh9h B*CJ_Hphh9h8CB*CJ_Hphh9h?B*CJ_Hphh9hhnbB*CJ_Hph%y@Afgb vwxxgdgd$a$gd $xa$gdR_$a$gdR_$ & F#d ^#a$gd4Nh$a$gd $d a$gd4Nh`ab}.[}Ʒշշշ{{l`Qh9hR_B*CJ_HphhIB*CJ_Hphh9h:B*CJ_Hphh9h[B*CJ_Hphh9h jB*CJ_Hphh9h(B*CJ_Hphh9hCBB*CJ_Hphh9h3 B*CJ_Hphh3 h3 B*CJ_Hphh3 B*CJ_Hphh9hB*CJ_Hphh9hMB*CJ_Hph }27X^uvwx}B\^}!Hh|h9hh]CJh9hcf'CJh9hTCJh9hD@CJh9h5:CJh9hCJh9hOJQJh9hB*CJ_Hphh9hR_B*CJ_Hph h9hR_ hICJh9hR_CJh9hR_5CJ\.B\^!Hh 2 b <`gd<gd x`gdD@xgd x`gd 2 b } _!g!z!{!!!""^"_"`"}"$$0$}$$^%s%y%%%%%%&<&ĺ٭ģęďĭـthh9hCJ]aJh9h0CJ]aJh9hB*CJaJphh9hCJ]h9h!BWCJ]h9hRCJ]h9hB*CJphh9hG?CJ]h9hCJ]h9hOJQJh9hCJh9h5:CJh9hh]CJh9h CJ$b _!g!{!_"`"0$$y%%Y&Z&i&j&v&&&&&^gd^gdgd6gd$a$ & Fgd & Fgd@;gdxgd <`gd<&X&Y&Z&i&j&k&m&u&v&&&&&&&&&&&&&&&&&&&&&&&&&&ȿܭ܇xphxdXhk]hR 6OJQJhR hqeOJQJhR OJQJhk]hR OJQJhrYjhrYUh9h>*CJh9hq>*CJh9he>*CJh9heCJh9h$kpCJh9hP'QCJh9h6CJh9hOJQJh9hCJh9h0CJ]aJh9hCJaJnHtH"&&&&&&&&&&&&'''' !,$$dNgd? !$&dPgd? $d a$gd&&' ' '''''''''俻h9hCJhrYhR h|/0JCJmHnHuhR 0JCJjhR 0JCJU hR CJhk]hR 6OJQJhR 6OJQJ 2&P:p?/ =!"#$% x666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666666866666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p(8HX`~8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@66666_HmH nH sH tH 8`8 Normal_HmH sH tH P@P  Heading 1$<@&5CJKHOJQJ>>  Heading 2 @& CJ<!<  Heading 3@& 5>*CJ^^  Heading 4+$$ 0(&`#$*$/@&a$5\@@  Heading 5$$@&a$5\DA`D Default Paragraph FontViV  Table Normal :V 44 la (k (No List 4@4 Header  !4 @4 Footer  !.)@. Page Number0U`!0 Hyperlink>*B*H>2H Title$x<a$5CJKHOJQJ@V A@ FollowedHyperlink>*B* >' Q> Comment ReferenceCJ4b4  Comment TextLB@rL Body Text$ d 7$8$a$*O* textd VCV Body Text Indent7$8$^`aJRv!R 0Unresolved MentionB*ph`^\q PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V (BO)MBT.$@0H!A>풠Uc-zD[&!rX=}zC0` ި%.]Ssd--7 +fOZեrŵVœ\lji2ZGwm-3˵j7\ Uk5FҨ-:xRkcr3Ϣ+9kji9OP Et-j|#p;E=Ɖ5Z2sgF=8 K}*7c<`*HJTcB<{Jc]\ Ҡk=ti"MGfIw&9ql> $>HmPd{(6%z:"'/f7w0qBcF6f Iöi1(\}B5ҹ~Bcr6I;}mY/lIz1!) ac 1fm ƪN^I77yrJ'd$s<{uC>== Ƌ(uX=WA NC2>GK<(C,ݖm: &-8j^N܀ݑ$4:/x vTu>*ٞn{M.Ǿ0v4<1>&ⶏVn.B>1CḑOk!#;Ҍ}$pQ˙y')fY?u \$/1d8*ZI$G#d\,{uk<$:lWV j^ZơSc*+ESa1똀 k3Ģxzjv3,jZU3@jWu;z \v5i?{8&==ϘNX1?  O4׹ӧCvHa01 %xz24ĥ=m X\(7Xjg !Ӆqd? cG7.`~w*?, 2 nN*"Fz_&n &\ F:l[+%f ;D 66sssvG '`<&&'!yb &' Xgnpv!t8@0(  B S  ?'.=E=E(0{|0;335YFGz{U0jFGz{= Eer7v #L   2 \ wh& T{". XE82 j5 k8 4: CCjDU LD L:D  zjG"w M } CV q3^Xk Bsh^F/_tLƨu $N} *h ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH. hh^h`OJQJo(hh^h`. hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo(hh^h`. hh^h`OJQJo( hh^h`OJQJo(hh^h`. hh^h`OJQJo(^`o(. ^`hH. L^`LhH.   ^ `hH. \ \ ^\ `hH. ,L,^,`LhH. ^`hH. ^`hH. L^`LhH. hh^h`OJQJo(hh^h`.h^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJ QJ o(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJ QJ o(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJ QJ o(hHhh^h`. hh^h`OJQJo(hh^h`.h^`OJQJo(hHh^`OJQJ^J o(hHohpp^p`OJ QJ o(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^J o(hHoh^`OJ QJ o(hHh^`OJQJo(hHh^`OJQJ^J o(hHohPP^P`OJ QJ o(hHh ^`OJQJo(h ^`OJQJo(oh pp^p`OJ QJ o(h @ @ ^@ `OJQJo(h ^`OJQJo(oh ^`OJ QJ o(h ^`OJQJo(h ^`OJQJo(oh PP^P`OJ QJ o(hh^h`.h^`OJQJo(hHh^`OJQJ^J o(hHohpp^p`OJ QJ o(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^J o(hHoh^`OJ QJ o(hHh^`OJQJo(hHh^`OJQJ^J o(hHohPP^P`OJ QJ o(hH0^`0o(.xx^x`.HLH^H`L.^`.^`o(.L^`L.^`.X X ^X `.(#L(#^(#`L.h hh^h`OJ QJ o(h 88^8`OJQJo(oh ^`OJ QJ o(h   ^ `OJQJo(h   ^ `OJQJo(oh xx^x`OJ QJ o(h HH^H`OJQJo(h ^`OJQJo(oh ^`OJ QJ o( hh^h`OJQJo(h ^`OJQJo(h ^`OJQJo(oh pp^p`OJ QJ o(h @ @ ^@ `OJQJo(h ^`OJQJo(oh ^`OJ QJ o(h ^`OJQJo(h ^`OJQJo(oh PP^P`OJ QJ o(h ^`OJQJo(h ^`OJQJo(oh ^`OJ QJ o(h m m ^m `OJQJo(h ==^=`OJQJo(oh   ^ `OJ QJ o(h ^`OJQJo(h ^`OJQJo(oh }}^}`OJ QJ o( hh^h`OJQJo(hh^h`.wh&^XkL:Dj5\L:DL:Dk84:L:DuXE82v$ygT{".} CV LD?@ABCDEFGHJKLMNOPRSTUVWX[Root Entry Fp^N]1Table#JWordDocument4DSummaryInformation(IDocumentSummaryInformation8QCompObjr  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q